
Correlations and susceptibilities in (quasi-)1D disordered spin systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 4379

(http://iopscience.iop.org/0305-4470/27/13/014)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Correlations and susceptibilities in (quasi-)iD disordered 
spin systems 

E Amici and J M Luck$ 
Service de Physique Th6orique. Centre d'htudes de Saclay, 91191 Gif-sur-Yvette cedex, 
France 

Received 12 January 1994 

Abstract We investigate two randomly frusuated ID or quasi-ID Ising systems with diluted 
disorder. namely the ferromagnetic chain in a random field and the ladder spin glass. We 
present an analytical study of the susceptibilities (linear x .  nonlinear x g ,  and higher orders), 
which characterize the response to a uniform external field at finite temperature. Both models 
admit a continuum description i n  the scaling regime of low tempemre and low impurity 
concentration, where the susceptibilities obey power laws, similarly to usual crihcal phenomena, 
albeit unlike the man-field theory of spin glasses. We obtain explicit expressions for the scaling 
functions of x and x 3 ,  and an estimate for the essential Lee-Yang singuluty. 

1. Introduction 

In disordered magnetic systems, such as spin glasses or random-field models, the combined 
effects of frustration and disorder can generate a complex pattern of low-energy metastable 
states, with far-reaching physical consequences, such as the appearance of the spin-glass 
phase, with its unusual thermodynamics, correlations, and dynamics [ 1,2]. 

One of the most celebrated characteristics of the spin-glass transition concerns the 
nonlinear response to a uniform external field, described by the susceptibilities. The 
Sherrington-Kirkpatrick mean-field theory [3] predicts that the linear susceptibility x is 
finite at the transition temperature T,, whereas the nonlinear susceptibility diverges as 
x ,  - (T - T&M, with f i  = 1. Experimental observations agree qualitatively with these 
predictions [2]. We recall the definition of the magnetic susceptibilities, which are the 
main subject of this article. Consider a model with king spins (U;), which obeys spin-flip 
symmetry on average, such as a spin glass, or a ferromagnet in a quenched random field 
with an even probability distribution. The free energy F ( H )  per spin of such a model in a 
uniform external magnetic field H can be expanded as an even power series of H ,  

The magnetization thus reads (for a finite system with N spins) 
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The coefficients xZ-, are the susceptibilities of the model. The linear suscepribility x ,  
which characterizes the linear response of the system, can be expressed as the following 
sum of the connected two-point correlation function in zero field: 
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whereas the nonlinenr susceptibility x 3  can be expressed as a sum of the four-point 
correlations of the spins, and so on for the higher-order susceptibilities xu-, . 

Exactly solvable one-dimensional (ID) disordered magnetic systems provide interesting 
test cases. In spite of the absence of a finite-temperature phase transition, frustration 
is responsible for the existence of numerous almost-degenerate states, yielding a rich 
low-temperature behaviour in thermodynamical quantities and correlation functions. The 
ferromagnetic king chain in a quenched random magnetic field is certainly the simplest 
of these model systems. It has been the subject of many investigations, based on the 
observation that its free energy is the Lyapunov exponent of an infinite product of random 
2 x 2 transfer matrices (see [4,5] for reviews). Its thermodynamical properties at finite 
temperature are known exactly only for some classes of distributions of the quenched 
random fields, either discrete [6] or continuous [7-91. Some results are also available 
for more general distributions of disorder, either at zero temperature [lo], or in the weak- 
disorder regime [11-13]. The two-point correlation function and the linear susceptibility x 
are only known in a limited number of cases [4,6,14], whereas virtually nothing is known 
about higher-order correlations and susceptibilities. The converse situation of an king chain 
with random exchange couplings is not frustrated, but the ladder geometry, i.e. two chains 
coupled by transversal exchange couplings, is frustrated, and thus provides an interesting 
spin-glass model [IO. 151. 

The purpose of the present article is a detailed study of the higher-order susceptibilities 
of ID disordered magnetic models, and particularly a comparison of their scaling behaviour 
with the cases of common critical phenomena and of the mean-field theory of spin glasses. 
The analytical investigation of the susceptibilities is performed on the ID disordered king 
models mentioned above, namely the ferromagnetic chain in a random magnetic field (in 
section 2). and the ladder spin glass (in section 3). The results are put in a more general 
framework in the discussion of section 4. We restrict ourselves to the case of dilured 
disorder, generated by infinitely strong impurities. This kind of disorder, introduced by 
Grinstein and Mukamel [6] for the random-field king chain, will be shown to allow for 
exact calculations, even in the more complicated situation of the ladder spin glass. In 
both models, the most interesting regime is that of low temperature and low impurity 
concentration, where both the thermal correlation length and the typical distance between 
two impurities are much larger than the atomic spacing. 

2. The king chain with infinite random fields 

The Hamiltonian of the ferromagnetic king chain in a random magnetic field reads 

?l=-x(J 0;1orz+1 + hmcn) (2.1) 
n 

with J > 0 being a uniform exchange coupling, and where the h, are quenched random 
magnetic fields, with a common even distribution p(h) .  
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In this section we restrict the analysis to the limiting situation where all the non-zero 
random fields are infinitely strong, i.e. 

+w with probability p / 2  

with probability r = 1 - p (2.2) 
-w with probability p i 2 .  

In this limit, all the impurity spins which are submitted to random fields h, = %m 
are pinned by these local fields, i.e. frozen. The chain is thus split into a collection of 
independent finite clusters, with prescribed boundary conditions. The spins inside each 
cluster are fiee, i.e. they are not submitted to any random field. As a consequence, physical 
quantities can be evaluated exactly by means of an enumeration procedure. Grinstein and 
Mukamel [6]  have calculated for the first time the thermodynamical properties and the two- 
point correlation functions of this model at finite temperature, in zero external field. A more 
detailed analysis has been performed since then, particularly at low temperature [4,9, 141. 

2.1. The free energy in a uniform field 

The enumeration approach initiated in 161 can be generalized in order to evaluate the free 
energy in a uniform external field H. Let Z;'" be the constrained partition function 
of a cluster of ( N  - 1) free spins [q, ..., uNN-l], with the fixed boundary conditions 
uo = E ,  = f l  and UN = EZ = f l .  The statistical weight of such a cluster is (pz /4 ) rN- l ,  
so that the free energy per spin at temperature T = I /@ reads 

(2.3) 

where the prime means that the infinite, temperature- and field-independent, contribution of 
the impurity spins has been omitted. 

The transfer-matrix formalism allows to compute the partition functions explicitly. 
Indeed, we have 

Zf;'ez = [ (TJTH)~-'TJ], , , , ,  (2.4) 

where the transfer matrices TJ and T U ,  associated, respectively, with a bond and a site, 
read 

We obtain after some algebra the following expression: 

(A," - A#)2 
4 w 2  

r P 2  (A," - A!!)' 
rN- l  in 

@F [ 4 w z  
=--E 

N=l 

for the free energy at finite temperature and external field. We have introduced the notation 

W = [1 + e4PJ ~ i n h ~ ( @ H ) ] ' ' ~  

A* = eoJ c o s h u f f )  f e-@'W 

(2.7) 

and 

(2.8) 

are the eigenvalues of the full transfer matrix T = TJTH of the pure king chain in an 
external field. 
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2.2. A summary of zero-field thermodynamics 

The thermodynamics of the model in the absence of an external field have been studied at 
length [4,6,9]. The expression (2.6) of the free energy simplifies to 

E Amic and J M Luck 

P2 DF‘ = - r 1 n 2 +  $ I n  (1 - r’) - - rN-’  ~n ( I  - 2”) 
N=l 

with the notation 

5 = e-*& = tanh(gJ). (2.10) 

The low-temperature behaviour of the result (2.9) can be derived by expanding the 
generic term of the sum as 

2 
In(1 - r 2 N ) = - 2 ~ J + l n ( 4 N ) - 2 N e - 2 ~ J + -  2N + ‘ e-48J + 0(~-681) (2.1 I )  

3 

We thus obtain 

F’ = EA - TSo - BTe-46J + . .. (2.12) 

with 

The expressions for the ground-state energy EA and for the zero-temperature entropy So can 
be interpreted by considering the jmt ra ted  clusters, i.e. those bordered by two impurity 
spins of opposite signs. On such a cluster with ( N  - 1) free spins, there are N ways of 
placing a Bloch wall, which costs an energy 25. The specific hear is exponentially small 
at low temperatures, namely 

C ES B(4pJ)’  e-4B’ . (2.14) 

2.3. Zero-temperature properties in afield 

We now investigate the zero-temperature thermodynamical properties of the model in an 
external field H, i.e. its ground-state energy EL and its zero-temperature residual entropy SO. 
We take H > 0 for definiteness. 

The quantities defined in (2.7) and (2.8) have the following low-temperature behaviour 
% egJiax, W m e@(21tH)/2, up to exponentially small corrections, so that (2.6) yields 

(2.15) 
2 I1 m 

E& = -pz  r N - ]  ( N  - 1) H + (N - 2) J + max J - ( N  - 1)-; 0 . 
N=l 

The cluster size N thus has to be compared with a fixed integer M ,  depending on the 
external field H. whose interpretation will become clear in a while. More precisely, we are 
led to set 

-=  23 M - 1 + 8  (2.16) 
H 
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with M 4 1 integer, and 0 < B < 1. Such a decomposition also shows up in the study of 
the king chain in a random field with a symmetric binary distribution (h ,  = &HB) [4,9]. 

The ground-state energy reads 

H Eh = - J ( r  - pr') - - [ r  + ( I  t ( M  - I ) p ) r M ]  
2 (2.17) 

whereas SO vanishes for generic values of H ,  i.e. for B # 0. 
The model therefore has an infinity of pure phases at zero temperature, labelled by the 

integer M ,  and separated by first-order transitions. The constant values of the magnetization 

(2.18) 

can be viewed as the order parameters of these phases. We have m, = r for M = 1. since 
every free spin is aligned with the external field, if the latter is strong enough (H > 2J). 
Conversely, the magnetizations converge to the low-field limit m, = r / 2 .  Indeed, all the 
free spins are aligned with an infinitesimally positive external field, except those which 
belong to clusters bordered by two negative impurity spins. 

For the transition values of the field, such that 2 J / H  = M is exactly an integer, we 
have 

mM = 4 [ r  + ( 1  + ( M  - l)p)r'] 

(2.19) 

The zero-temperature entropy originates in the clusters of M free spins between two negative 
impurity spins, on which the two configurations where all the free spins are parallel are 
degenerate for 25 = MH exactly. This is the only possible case of degeneracy in a non-zero 
external field. 

2.4. Scaling regime at low temperature 

At low temperatures, the following three length scales show up in a natural fashion 

The correlation length of the pure ferromagnetic king chain in zero field reads 
6 = l /(2p),  with the notation (2.10), and thus diverges at low temperatures. 

e When the concentration p of impurities is small, there is a second diverging length, 
namely the typical distance L = I/p between two impurities. 
If the external field H is very weak, we can define a magnetic length L X  = T / H ,  
corresponding to the scale on which the interaction energy of an array of parallel spins 
with the external field becomes comparable to the thermal energy T. 
It can therefore be expected that, in the scaling regime where p .  T. and H simultaneously 

go to zero, the system admits a continuum description, where the three divergent lengths 
have to be compared, and where physical quantities keep a dependence in the dimensionless 
ratios of these lengths. We choose to work with the following scaling variables: 

(2.20) 

The occurrence of a scaling behaviour, when p, T ,  and H go to zero, with fixed values 
of the scaling variables x and y, can he checked explicitly in the case of the free energy by 
estimating the behaviour of (2.6) in the scaling regime. We thus obtain 
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where the zero-field ground-state energy EA and zero-temperature entropy So have been 
given in  (2.13). 

The scaling function Q ( x ,  y )  describes the contribution to the free energy of the low- 
temperature, long-wavelength excitations of the system. It admits the following integral 
representation: 

E Amic and J W Luck 

@ ( x ,  y) = im dt e-‘ [In (2.22) 

with the notation 

w = (x‘ -I- 4))’) I ” .  (2.23) 

The ratio w / x  is nothing but the scaling form of the quantity W, defined in (2.7). An 
integration by parts yields the alternative expression 

1 @ ( x , y ) =  ~ ~ ~ d ~ e - ~ [ c o t h ( t w / 2 ) - - +  2 sinh(fw) 
t w  cosh(fu1) - 1 + 2 w z / x z  

(2.24) 

Several limiting situations deserve our attention. 

2.4.1. Zero magneficfield: scaling in the g-T p h e .  In the absence of an external magnetic 
field (y = 0, whence ut = x ) .  the scaling regime in the p-T plane is described by the one- 
variable scaling function 

O(x,  0) = F(x) = (2.25) 
t x  

a result known previously [4,9]. 
The scaling function 3 ( x )  has been shown to play a role in the scaling analysis of other 

disordered systems, such as the conductance of electrical ladders [16], the 2D king model 
with layered randomness [17,18], and the quantum king chain with random exchanges in 
a transverse field [19]. The function F ( x ) ,  defined by (2.25) for Rex z 0, can be rewritten 
as 

(2.26) 

In these expressions, 9 is the digamma function, the logarithmic derivative of Euler’s 
r-function, whereas 

(2.27) 

are the Bernoulli numbers, related to Riemann’s <-function. 
The behaviour of the scaling function for small and large values of x is the following: 

F(x) = g x 2 -  &x4+  e G X 6 +  ... x -+ 0 (2.28a) 
3 ( x )  = x - ln(2x) + fi + . . . x -+ CO (2.286) 

where y~ is Euler’s constant. 
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The function F(x)  is indefinitely differentiable, but not analytic at x = 0. In other 
terms, the power series (2.26) is divergent, and its sum has an exponentially small non- 
perturbative ambiguity, or singular part, near x = 0. In order to give a precise meaning to 
this last statement, and along the lines of [19], it is advantageous to extend 3 ( x )  to an even 
function of x ,  by setting F(x) = F(-x) for Rex < 0. The function thus obtained has a 
discontinuity along the imaginary axis, i.e. 

2n i 
p l x i  - 1 . (2.29) 

This exact result is a consequence of the difference identity for the @-function, namely 
*(z) - @(-z) = -37 cot(nz) - l/z. 

The singular part of F can be estimated in the following alternative way. The difference 
considered in (2.29) can be expressed by deforming the second representation of (2.25) to a 
complex contour integral which encircles the poles of the integrand. Since the nearest pole 
lies at I = in/x,  we get the exponential estimate 

3&l) = F(ilx1 + 0) - F(ilxl - 0) = 

3s6 - e-n/lxl , (2.30) 

This result can alternatively be related to the large-order behaviour of the coefficients of 
the power series (2.26) by using the asymptotic form of the Bernoulli numbers (2.27) along 
the lines of a resummation procedure for divergent series, used extensively e.g. in quantum 
field theory (see e.g. [20]). 

2.4.2. Zero temperature: scaling in the p -H plane. The scaling regime in the p-H plane 
is described by the scaling function 

wl Y) = F(Y). (2.31) 

We thus obtain the same functional form in x at y = 0, and in y at I = 0. 
The small-y behaviour of O(0, y). related to the susceptibilities, will be discussed in 

detail in section 2.5. Its large-y behaviour matches the small-H behaviour of the ground- 
state energy (2.17), namely Eh = -J - H/2 + O ( p ) .  

2.4.3. Weak disorder: scaling in rhe T-H plane. The limit where both scaling variables x 
and y are simultaneously large describes the crossover to the scaling behaviour of the pure 
king chain in the T-H plane. An evaluation of the integral representation (2.24) yields to 

(2.32) 

The leading term of this expansion is in accord with the singular part of the free energy of 
the pure chain in the scaling regime, i.e. 

@ ( x ,  y) = w - Inx +YE + O(I/x, I / Y ) .  

BF,, = B(F'  + J )  E= - ( B Z H z  + M ~ ) ~ / ~  = - P W P .  (2.33) 

This estimate can be recast as BFSs zz I / & ,  where L is the following combination of the 
magnetic and thermal lengths: 

(2.34) 



4386 

2.4.4. Complex magnetic field: the Lee-Yang singularities. The analytic structure of the 
two-variable scaling function in the complex y-plane is also worth being investigated, since 
it yields the form of the Lee-Yang singularities [21,22] of the present problem. 

The free energy is expected to be analytic around H = 0 at finite temperature, The 
scaling function Q ( x ,  y) is indeed analytic around y = 0, for any x f 0. It has isolated 
essentjal Siflgularjties at the mmpJex points y = & ~ / 2 ~  where the varjahle ut of (223) 
vanishes. The position of the Lee-Yang singularities is therefore the same in the pure king 
chain and in the random one. The asymptotic form of these singularities as w + 0 is again 
governed by the position of the nearest pole of the integrand in (2.24), which lies close to 
t = 2irrJw for lwl small, whence the estimate 

r$sg - e - w l w l  (2.35) 

which matches (2.30) at very low temperature ( x  = 0). - rrlcl, where L: is the length introduced in (2.34). 
In other words, the Lee-Yang singular free energy is approximately the statistical weight of 
a cluster whose length L: scales as the reciprocal singular free energy of the pure model. 

2.5. The susceptibilities 

2.5.1. Finite temperature. Let us now turn to the analysis of the susceptibilities of the 
random-field chain, with emphasis on i( and x,. By expanding (2.6) as a power series 
in H, we can obtain, at least in principle, all the susceptibilities at finite temperature. 
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The result (2.35) can be recast as 

The linear susceptibility reads 

By expanding the denominators first, this expression can be recast in the following form, 
which exhibits its structure in the complex temperature plane: 

These results are in agreement with those of [4,14]. Let us notice that in [I41 x is defined 
from (1.3) without the prefactor B .  

We obtain a formula similar to (2.36) for the nonlinear susceptibility, namely 

(2.38) 

where AN? B N ,  and CN are the following polynomials in 5 and r N :  

AN = 12TZN(1 - z)’(l+ r ) (1+ 5’)’ 

BN = ( 1 - T ) ( 1 - 5 2 N ) [ ( 1 + 4 7 + T Z ) ( 1 $ . r 4 N ) + 2 ( 7 +  1 6 ~ + 7 ~ ~ ) r ~ ( l + T ’ ~ )  

- 2(11+ 20s + l i r2) rZN]  (2.39) 

C N  = -(I + T)(I - rN12[(1 + lor + ?)(I + 54N)  + 8(1+ 4r + s Z ) r N ( l  t 52’) 

- 2(5 + 25 + 5r2)rzN].  
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2.5.2. Scaling regime at low temperature. The most interesting situation is again the low- 
temperature scaling regime, where the scaling function @(x, y) is the generating function 
of all the susceptibilities. To be more specific, if we introduce the notation 

we obtain the following scaling laws: 

The scaling function of the linear susceptibility is obtained by either expanding the 
expression (2.24) of @(x, y ) ,  or by estimating the behaviour of the result (2.37) in the 
scaling regime. It reads 

cosh(tx) m 
dt e-' t coth(tx) - - dt e-' (2.42) 

X2' 1 cosh2(tx/2) ' 

This result can again be expressed in terms of the digamma function @, and of its first 
derivative 

(2.43) 

The asymptotic expansions of S(x) are as follows: 

S(x) = f + 14x2 15 - 229x4 42 + . . . x + o  (2.44a) 

+... X ' C Q .  (2.44b) 
2 4 4+n2/6 
x 1 2  x3 

S(x) = - - - + 

The low-temperature susceptibility can be derived from (2.36) for any value of the 
dilution p. 

the small-p behaviour being in accord with the value S(0) = i. Conversely, the large-x 
behaviour S ( x )  x 2/x describes the crossover for p << p from the disordered chain to the 
ordered one. The susceptibility of the latter reads x = B e2BJ % p/p.  

Similarly, the scaling function of the nonlinear susceptibility reads 

4 m  t 2  1 m  cosh(2tx) + lOcosh(tx) - 7 
dte-'t & ( x )  = 1 d t  e-' 

sinh*(tx) sinh(tx) coshz(tx/2) 

2 m  cosh(2tx) + 4cosh(tx) - 1 
cosh4(tx/2) 

- -p 1 dte-' (2.46) 
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I chain 

"0 2 4 6 a 
X 

Figure 1. Plot of thc scaling function S ( x )  of the linear susceptibility x of the king chain with 
infinitely strong mdom fields. 

This function now involves the digamma function I/I and its first two derivatives, namely 

1 
S,(x) = - -*" 

x3 

32 16 80 16 
+-+ 4 3x4 3x3 3x2 x 

(2.47) 

The asymptotic expansions of & ( x )  are as follows: 

(2.48~) 4 176 2 S,(x)=---x 15 21 f... x - t o  

(2.486) 
4 16 

x 3  x4 &(x) = - - - t, .. x + W .  

The low-temperature nonlinear susceptibility can alternatively be derived from (2.38) 
for any value of the dilution p 

the small-p behaviour being in accord with the value &(O) = &. Conversely, the large-x 
behaviour & ( x )  x 4 fx3 describes the crossover for p << fl from the disordered chain to the 
ordered one. The nonlinear susceptibility of the latter reads ,y3 = @3e20J(3e4flJ - 1)/6 iii 
~ ~ i ( 2 ~ ~ ) .  

Figures 1 and 2 show plots of the scaling functions S ( x )  and S3(x ) .  
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0 
0 1 2 

X 
Figure 2. Plot of the scaling function & ( x )  of the nonlinw susceptibility ,y3 of the king chain 
with infinitely strong random fields. 

We end up this section with a few general properties of the scaling functions S,-I(.Y) 
of the higher-order susceptibilities x ~ - ~ .  First, their values at x = 0 can be obtained from 
the expression (2.31) of Q(0, y )  and from the expansion (2.26) 

(2.50) 

On the other hand, the low-temperature behaviour of the higher-order susceptibilities of 
the pure ferromagnetic king chain can be derived by expanding the estimate (2.33), namely 

We thus obtain the large-x fall-off of the scaling functions 

(2.51) 

(2.52) 

Finally, the general analytic structure of the scaling functions of the higher-order 
susceptibilities is clearly visible on (2.43) and (2.47): S,-l(x) is a linear combination 
with rational coefficients of the digamma function, and of its first t derivatives, up to 
$I(%). 

3. The ladder spin glass 

3.1. The model 

We now consider a ladder-shaped spin glass [ 10,151, consisting of two interacting king 
chains. The model is defined by the Hamiltonian 

x = - " (3.1) [J(Uyu;:'] + UpU;?]) + L U "  (1)  un (2) + H( U" (1) + u(2))] . 
n 
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There is a uniform ferromagnetic longitudinal exchange coupling J > 0 between 
neighbouring spins along the ladder, and a uniform external magnetic field H ,  whereas 
the transversal exchange couplings K. across the ladder between the spins U:]) and uf' of 
the nth column are quenched random variables. Figure 3 fixes the notations. 

E Ainic and J M Luck 

0;") ,~~ J J J J 0,;. - - - - -  

J J J ~ ( 2 )  J ~ ( 2 )  
1 2 4 5 

Fig" 3. Schema of the ladder spin glass. showing the conventions and notations used for the 
spins and the exchange couplings. 

We restrict again ourselves to the limiting situation where the random exchange 
interactions are either zero or infinite, according to the law 

+w with probability p/2  1 --w with probability p / 2 .  

K, = 0 with probability r = 1 - p (3.2) 

The infinitely large transversal exchange coupling which acts on the pair of spins of 
every impurify column either identifies them (U;'] = uf) if K. = +m), or forces them 
to be anti-parallel (U,") = -uA2) if K. = -00). The values of the individual spins are 
not determined, so that the impurities do not have the effect of splitting the ladder into 
independent finite clusters. The present model is thus more difficult than the chain with 
infinitely strong random fields, studied in section 2. In spite of this difficulty, we have 
evaluated its zero-field thermodynamics and its linear susceptibility at finite temperature. 

We start with some general formalism. Let Z,.I,€* be the restricted partition function at 
temperature T = 1/g of the first n square cells, or pluquettes, in an external field, and with 
prescribed boundary conditions U,') = E , ,  ui2) = ~ 2 .  Because of the up-down symmetry of 
the ladder, we have Z$- = Z;+. The partition functions of hvo successive sizes (n - 1) 
and n obey the following recursion relations: 

(3.3u) 

z,+- = ( z::~ + 2cJ z,+_; + ZJ (3.3b) 

(3.3c) 

z,++ = eB(Kat2H) (e 2 P f  zH *-I + 2z+- "-1 + ,-ZBJ z-- "-1) 

z-- = eB(K"-2H)(e-2PJ z++ "-1 + 2z,+_; + eZB' Z;:]) 

with the notation 

CJ = cosh(2gJ) s, = sinh(2gJ) CH = cosh(2gH) SH = sinh(2gH). 
(3.4) 

z,++ = X" + y" z;- = x. - yn z;- = w, . (3.5) 

Let us introduce, for convenience, the following parametrization: 
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In terms of the new variables, the recursion (3.3) reads 

x, = 2eQKqcJcHxn-, + C"Wn-I + s,sHY"-I) 

Yn 2eBKn(CJSHXn-I + S f i W , - ]  + SJCHyn-I) 

w. = 2e:JK*(x,-l + c , w , - , ) .  

(3.60) 

(3.6b) 

(3 .6~)  

3.2. The free energy in zerofield 

When the external magnetic field vanishes, the variables yn vanish because the system 
recovers the spin-flip symmetry, and the recursion relations (3.6) assume the form 

( 3 . 7 ~ )  

(3.7b) 

As already noticed in [ 151, this problem is equivalent to that of a random-field king 
chain, up to the substitution K, + h,, C J  + e'#'. The free energy of the model per 
plaquette is given by the Lyapunov exponent of the infinite product HE=, z, where I, is 
the 2 x 2 transfer matrix defined by the linear recursion (3.7). We follow from here on 
the DysonSchmidt approach (see [4] for a review). We introduce the ratios, or Riccati 
variables, p. = x, fwn.  These quantities obey a recursive map of the form 

When the label n becomes large, the Riccati variables pn admit a stationary limit 
distribution, which is invariant under the transform (3.8). The free energy is then given by 

- @ F  = In 2 - p7C + (In(p, + c,))  (3.9) 

where the brackets (. . .) denote an average WRT the invariant measure of the pn. 

variables 
For the sake of convenience, and along the lines of [4,7,9,14], we introduce the 

(3.10) 

In  terms of these variables, and for the distribution (3.2) of the random exchange couplings, 
the recursion relations (3.7) and (3.8) take the form 

(3.11) 

where 5 has been introduced in (2.10). The invariant probability density of the zio) thus 
reads 

(3.12) 
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Furthermore, the expression (3.9) of the free energy becomes 

E Ainic and  J M Luck 

(3.13) 

In order to obtain a well defined finite value of the free energy of the model, one has 
to subtract the infinite, temperature-independent, contribution of the infinite transversal 
couplings K, = k~. It turns out that the term to be subtracted coincides with the divergent 
contribution of the value zho) = - 1  to the average in (3.13). We have indeed, assuming 
for a while that the transversal exchange couplings are not strictly infinite (K, = &K, with 
K -+ CO) 

(3.14) 

The finite part of the free energy, i.e, 

F ' =  lim ( F + p K )  (3.15) 
K-CO 

is thus given by 

This result is very similar to (2.9). Its low-temperature behaviour follows (2.12) and 
(2.14), with 

The ground-state energy Eh shows an excess of p J  with respect to two decoupled 
k ing  chains, due to thefrustrutedclusters, namely sequences of plaquettes bordered by two 
infinite transversal couplings of opposite signs. These clusters have a frequency p/2. Every 
such cluster causes an excess of energy of 23, since there has to be one Bloch wall on either 
chain inside the cluster. The zero-temperature entropy SO reflects that there are 2k different 
ways of placing the Bloch wall inside a frustrated cluster of length k .  The exponent 45 
which governs the low-temperature behaviour of the specific heat is nothing but the energy 
gap between the ground states and the lowest excitations; the latter correspond to flipping 
any number of spins on either chain within a cluster. 

Finally, the free energy of the ladder spin glass exhibits the very same kind of scaling 
behaviour as that of the random-field chain, when T and p are both small, namely 

(3.18) 

where the variable x and the function 3 have been defined in (2.20) and (2.25), respectively. 

PT 
2 

F' Fi: EA - TSo - -3(ZX) 
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3.3. The linear susceptibilily atfnite temperature 

We now turn to the evaluation of the linear susceptibility x of the ladder spin glass at finite 
temperature. To do so, we have to expand in a systematic way the variables which enter 
(3.3) and (3.6), up to second order in the external field H .  The lengthy derivations which 
follow lead to the explicit final formulae (3.37) and (3.38). 

It is advantageous to io@oduce the following notations, for any non-zero field: 

(3.19) 

These variables obey the recursion relations 

(3.20b) 

with the notation given in (3.4). 

of the external field H leads to the expansions 
The observation that the zn (respectively, the S,) are even (respectively, odd) functions 

( 3 . 2 1 ~ )  
(3.216) 

In terms of these H-independent variables, the recursion formulae take the following form 

(3.22a) 

(3.22b) 

For the distribution (3.2) of the random exchange couplings, ( 3 . 2 2 ~ )  coincides with 
(3.11). Furthermore, the expression (3.13) of the free energy remains valid, up to the 
substitution zro) -+ zn. We thus obtain 

(3.23) 

where (. . .) stands for the invariant joint distribution of the random variables zL0) and zL2). 
Because of the complexity of the recursion relations (3.22), we prefer to split the average 

in (3.23) into constrained averages, according to the value of K,, namely 

(3.24) 
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The third contribution ( K n  = -CO) to the susceptibility indeed vanishes, because two 
opposite spins of the same column give no net change of the magnetization when the 
external field pins either of these spins. 
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Setting again for a while K ,  = K + +m, (3.22~) yields the estimate 

so that the first term of (3.24) reads 

We thus obtain 

m m x ='VIP+ i ? ; 5 + 2 p r r x ( b n + b k + i ) r "  2p%S + 4 p r r 2 x a u r 4 '  

k=O k=O 
m 

+ 4r E(-I)'( 1 - r'+')ak 1 
k=O 

(3.25) 

(3.26) 

(3.27) 

(3.28~) 

(3.286) 

(3.28~) 

The evaluation of the latter quantities is still rather lengthy. First, using (3,22b), we 
obtain 

whence 

(3.29) 

(3.30) 

We can thus eliminate the bk and obtain 

(3.32) 
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so that 

r2k 
bk + bk+l = 1 - rr2k+l [ c k  - S ' ~ A + I  + (-1)'prSI (3.33) 

where the moments Ck = ( z L O ) ~ )  can be evaluated from the distribution (3.12) 

k even 
(3.34) 

k odd . 

Moreover, observing that S does not actually depend on the constraint K ,  = +oo, 
(3.33) leads to 

On the other hand, the recursion (3.22~)  allows us to determine the moments ak 

r % f 4 ( 1  + rra+3)Ck+* 
- . (3.36) 

r r4k+3ck+I 
2 (1 - rr%+')(l  - rr*k+3) 3(1 - rr%+3) 

- - ( I  - 2) 

A rather lengthy calculation then gives the final outcome 

(3.38) 
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The general results (3.37) and (3.38) reduce to the susceptibility x = 2j3( 1 -t .c)/(l - 7 )  

of two independent king chains in the absence of impurities (p = 0). 
Another limiting case of interest is that of a non-diluted ladder (p = I ) ,  where every 

transversal coupling is non-zero. Consider the slightly more general situation where the 
transversal couplings assume the values K, = &CO, with respective probabilities q and 
1 - q. It follows from (3.24) that the susceptibility of the latter model reads 

Moreover, the constrained average S is readily obtained from (3.29), which yields 

so that 

1+r2 
1 - 2qr + rz s= 

We are thus left with 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

This expression for q = f ccincides with (3.37),(3.38) for p = 1, namely x = 
?$(I + r + r2)/(1 - r + r2).  

3.4. Tlze linear susceptibility at low temperature 

The zero-temperature behaviour of the susceptibility can be derived from the result (3.37) 
by replacing the sums over the integer k by integrals over the continuous variable 2 k ~ .  We 
thus obtain 

47 - lop - p' 
x = : 8  6p (3.43) 

This expression has the same Ijp-divergence in the small-p limit as the result (2.45) 
concerning the random-field model. More generally, the scaling analysis of section 2 applies. 
In the scaling regime, and again with the notation (2.20) for x, the sums in (3.38) can be 
turned into integals over the continuous variable t = kp. We thus obtain a one-variable 
scaling law of the form (2.41) for x. where the scaling function S ( x )  now reads 

4 m sinh(tx) - t x  dte-'"+l-" 
sinh(2rx) S ( x )  = - I + x  - x42 - 

(3.44) 
dre-'; 

cosh(tx) 
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This result can again be expressed in terms of the digamma function and of its first derivative, 
albeit in a nonlinear way, namely 

1 
+ - 4x4 b*(&) - *(G + a) - *(- 4x + -) 4 +4x 

1 1  1 1 3  1 1  
S(x) = - x3 [-@'(G) 2 +@(z+z) -@(-+ 4x -) 4 - 4 x ( l + x )  

(3.45) 

1 1 3  1 1  

This expression is considerably more complicated than its analogue (2.43) concerning the 
random-tieid model. The point to be stressed is that S ( x )  is no longer linear in the Eulerian 
functions in the present case. This observation virtually excludes any possibility of having a 
closed-form expression for the generating function of the correlations in the low-temperature 
scaling regime. 

The scaling function S ( x )  has the following behaviour for small and large values of its 
argument 

,qX) = 47 - mx*+ ... x --f 0 (3 .46~)  

+...  x - + W .  (3.46b) 

The value S(0) = 8 agrees with the result (3.43), whereas the fall-off S(x) Frj 4/x matches 
the crossover to the susceptibility of two uncoupled ferromagnetic chains. 

6 15 

4 1 2 + 2 n  - 121n2 
X x 3  

S(X) = - + ii 

Figure 4 shows a plot of the scaling function S(x). 

Figure 4. Plot of the sd ing  function S ( x )  of the linear susceptibility x of the ladder spin glass 
with infinitely strong random exchange couplings. 
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4. Discussion 

We have investigated the susceptibilities of two examples of ID disordered and frustrated 
magnetic models, namely the ferromagnetic king chain in a random field and the ladder spin 
glass, with diluted disorder generated by infinitely strong impurities. In the first example 
of a chain in a diluted random field, studied first by Grinstein and Mukamel, the non-zero 
fields pin the impurity spins at any temperature. The chain is thus split into independent 
finite pieces, so that its free energy in an external field can be evaluated as a weighted sum 
over clusters. An explicit calculation of the susceptibilities is thus possible. In the second 
example of a ladder spin glass with infinitely strong random exchange couplings, the pairs 
of spins (U,?, U:’)) of the impurity columns are forced to be either parallel or anti-parallel, 
at any temperature. This kind of frustration is different from the previous one, since only 
the relative sign u,?u;) of the pairs of impurity spins is fixed, so that the ladder is not 
split into independent clusters. Indeed the value of u:’), say, propagates some dynamical 
information along the whole system, whence the higher level of difficulty. In this second 
model, we have obtained exactly the zero-field thermodynamics and the linear susceptibility 
at finite temperature. 

One of the main outcomes of this study concerns the behaviour of the susceptibilities 
in the scaling regime where the thermal correlation length and the typical distance L 
between impurities are comparable to each other, and much larger than the lattice spacing. 
The discussion which follows relies on our detailed analysis of the Grinstein-Mukamel 
model of a ferromagnetic chain in a random field. We claim that analogous scaling laws, 
with the same exponents, hold true for any I D  or quasi-ID magnetic model with diluted 
disorder, whether or not the random fields or exchange couplings are infinitely strong. 
This assertion is corroborated by the following two facts. The linear susceptibility of the 
ladder spin glass follows the same scaling law as that of the random-field chain, but with a 
different, more complicated, functional form for the amplitude S(x). The susceptibility of 
the random-field k ing  chain is also known [ 141 for a class of diluted continuous distributions 
of the random fields. Its low-temperature behaviour coincides with that obtained here, again 
up to an absolute prefactor, which bears the dependence on the distribution of the random 
fields. 

The scaling laws x2t-I X (p /p )z t - lS~- i (x )  are a consequence of the more general 
two-variable scaling behaviour (2.21) of the singular part of the free energy, which involves 
the magnetic length L H  as a third length scale. At first sight, the low-temperature estimates 
x = ,9 / (3p)  and x3 = 4P3/(l5p3), implying x3 >> x2, seem to be in rough qualitative 
agreement with the case of experimental (3D) spin glasses, or with the predictions of mean- 
field theory, namely that x3 diverges, whereas x stays finite at the spin-glass transition. On 
the other hand, the estimates recalled just above are not a peculiarity of the random fixed 
point of ID model systems, since they hold throughout the scaling regime, including the 
limiting situation of the pure ferromagnetic chain, where x x p / p  and x, zz p3/(2p3) .  so 
that again x3 >> x2. 

This is no paradox. Consider the case of typical critical phenomena, governed by an 
isolated fixed point, with only two independent critical exponents, 7 and U ,  and with the 
standard hyperscaling laws. The singular part of the free energy r a d s  
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F,, x It[d”O (H[t[-‘d+2-o’”’Z 1 

yzL-, = [(d + 2 - ~l)! - d]”  

(4.1) 

with f = (T - Tc)/T,, and d the spatial dimension. The susceptibilities therefore obey the 
power laws x2(-[ - [f[-’y-l, with exponents 

e > i .  (4.2) 
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The inequality xs >> xz is thus rather a general rule than an exception, since M - 2y = 
du z 1 at a continuous phase transition. 

As it turns out, the Sherrington-Kirkpatrick mean-field theory of spin glasses is an 
exception to the scaling laws (4.1) and (4.2), even on the paramagnetic side of the spin- 
glass transition (T z To). where there is no trouble whatsoever with replica-symmetry 
breaking. Indeed the linear susceptibility x plays a special role in the theory, so that the 
free energy obeys a modified scaling formula 11-31 

F ,  = -g [ 1 - I  w(&)] (4.3) 

for both H and i small, with the notation t = (T - TG)/TG, and where the scaling 
function Y(x) is even and regular around x = 0. This implies that the linear susceptibility 
~ ( T c )  = l/Tc is finite, whereas only the higher-order susceptibilities diverge, with the 
exponents yZ-] = 2e - 3 for t 2 2. 

The zero-temperature transition of the pure ferromagnetic king chain fits the general 
scheme (4.1), (4.2) of usual critical phenomena, up to the identification H + p H ,  F + p F ,  
It1 + p, and with formally U = q = 1. 

The explicit results obtained in this work demonstrate that randomly Frustrated ID 
magnetic systems with dihted disorder, unIike mean-field spin glasses, also fit the scaling 
scheme (4.1) and (4.2) near their zero-temperature fixed point, with the identification 
mentioned just above, but with p replacing p, The extra scaling variable x = 2p /p  
describes the crossover inside the scaling regime from the physics of the random system 
for x small to that of the pure system for x large. 

We emphasize that the scaling behaviour of the nonlinear susceptibilities for ID magnetic 
systems with a continuous, non-diluted distribution of the random fields or exchange 
couplings remains unknown so far. The low-temperature physics in the presence of diluted 
and non-diluted disorder is indeed very different [4.9,14]. For instance in the latter case 
the specific heat generically vanishes linearly with the temperature, whereas the linear 
susceptibility reaches a finite zero-temperature limit. 

Among other aspects of the present work, let us emphasize the estimate (2.35) of the 
LesYang singularity. This exponentially small essential singularity in the complex H-plane 
is very reminiscent of the Lifshitz singularities of, for example, disordered electronic spectra 
at their band edges (see 14,233 for reviews). Connections between Lifshitz singularities and 
the Griffiths singularities of the free energy of some disordered magnetic models in the 
complex T-plane [24] have already been established 1251. 
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